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Abstract 

 

One’s present repertoire of antibodies encodes the history of one’s past 

immunological experience.  Can the present autoantibody repertoire be consulted to 

predict resistance or susceptibility to the future development of an autoimmune 

disease?  Here we developed an antigen microarray chip and used bioinformatic 

analysis to study a model of type 1 diabetes developing in non-obese diabetic (NOD) 

male mice in which the disease was accelerated and synchronized by exposing the 

mice to cyclophosphamide at 4-weeks of age.  We obtained sera from 19 individual 

mice, treated the mice to induce cyclophosphamide-accelerated diabetes (CAD), and 

found, as expected, that 9 mice became severely diabetic while 10 mice permanently 

resisted diabetes.  We again obtained serum from each mouse after CAD induction.  

We then analyzed, using rank-order and superparamagnetic clustering, the patterns of 

antibodies in individual mice to 266 different antigens spotted on the chip.  A selected 

panel of 27 different antigens (10% of the array) revealed a pattern of IgG antibody 

reactivity in the pre-CAD sera that discriminated between the mice resistant or 

susceptible to CAD with 100% sensitivity and 82% specificity (p=0.017).  

Surprisingly, the set of IgG antibodies that was informative before CAD induction did 

not separate the resistant and susceptible groups after the onset of CAD; new antigens 

became critical for post-CAD repertoire discrimination.  Thus, at least for a model 

disease, present antibody repertoires can predict future disease; predictive and 

diagnostic repertoires can differ; and decisive information about immune system 

behavior can be mined by bio-informatic technology.  Repertoires matter. 
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Introduction 

 

 Autoimmune diseases are marked by abundant autoantibodies and by 

vigorously responding T cells targeted to selected self-antigens (1).  Immunology has 

tended to focus on such blatant reactivities (2) and has paid relatively less attention to 

the autoimmunity detectable to non-classical self-antigens and to the low levels of 

global autoreactivity detected in healthy subjects (3-6).  An important question is 

whether bioinformatic analysis of the global autoantibody repertoire can predict 

whether a subject will resist or develop an autoimmune disease before the disease is 

actually induced by an environmental insult.  Can the analysis of immune repertoires 

contribute to predictive medicine?  The present study uses microarray technology and 

bioinformatic analysis to address that question in an animal model of type 1 diabetes. 

 Male mice of the NOD strain spontaneously develop type 1 diabetes at a 

relatively low incidence and late age compared to female NOD mice (7).  In our 

colony, 80-90% of female mice become diabetic by the age of about 6 months 

compared to about 40-50% of male mice at 9 months of age (8).  However, the onset 

of diabetes can be significantly accelerated and synchronized by exposing NOD mice 

to cyclophosphamide (9).  Cyclophosphamide-accelerated diabetes (CAD) is thought 

to occur through the selective toxicity of cyclophosphamide for regulatory T cells that 

otherwise inhibit the disease process (8, 9).  The CAD model of type 1 diabetes thus 

provides an opportunity to test whether the global autoantibody repertoire might 

reflect resistance or susceptibility to CAD in still-healthy mice, before the 

cyclophosphamide insult is administered. 

We obtained sera from male NOD mice at the age of one month, well before 

the onset of the spontaneous autoimmune reaction that, once initiated, destroys the β-
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cells.  We then treated the mice with cyclophosphamide and obtained a second 

sample, after those mice susceptible to diabetes had developed the disease.  In this 

way, we could test the pre-CAD and the post-CAD sera from both susceptible and 

resistant mice.  Recently, microarray antigen chips have been used to detect high-titer 

autoantibodies to known antigens in autoimmune diseases (10, 11).  However, rather 

than focusing only on known self-antigens, we here profiled individual immune 

systems by their global patterns of autoantibodies free of bias for high-titer 

reactivities to particular self-antigens.  We developed a microarray antigen chip 

(manuscript in preparation) by covalently spotting 266 different antigens to the coated 

surface of glass slides, incubated these antigen chips with the sera of the individual 

mice obtained before and after CAD induction and detected by laser illumination the 

amounts of antibodies binding to the different antigen spots.  Since type 1 diabetes is 

caused by autoimmune T cells (12), we focused the repertoire analysis on the IgG 

antibodies, whose presence implies T-cell reactivity. 
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Materials and Methods 

 

Mice 

Male NOD mice were raised and maintained under pathogen-free conditions 

in the Animal Breeding Center of The Weizmann Institute of Science.  The 

experiments were carried out under the supervision and guidelines of the Animal 

Welfare Committee.  The mice were 4-weeks old at the start of the experiments.  

Nineteen mice were studied individually. 

 

CAD 

Diabetes onset was accelerated and synchronized as previously described (9) 

by two intraperitoneal injections of 200 mg/kg of cyclophosphamide (Sigma, 

Rehovot, Israel) given at the age of 4 weeks and again one week later.  In our colony, 

this treatment of NOD males leads to an incidence of diabetes of about 50 % (8).  The 

mice developing diabetes go on to die unless they are treated with insulin; those males 

that do not develop diabetes within 1 month after two injections of cyclophosphamide 

do not become diabetic later in life (data not shown).  Figure 1 is a schematic 

representation of the protocol.  

 

Diabetes 

Blood glucose was measured weekly.  A mouse was considered diabetic when 

its blood glucose concentration was higher than 13 mM on two consecutive 

examinations, tested using a Beckman Glucose Analyzer II (Beckman Instruments, 

Brea, California, USA).  Of the 19 mice treated with cyclophosphamide, 9 developed 

diabetes and 10 remained healthy throughout a 2-month period of observation.  
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Sera  

Serum samples were collected one day before the first injection of 

cyclophosphamide, and 1 month after the second injection.  Blood was taken from the 

lateral tail vein, allowed to clot at room temperature and, after centrifugation, the sera 

were stored at - 20°C.  

 

Antigens 

The 266 antigens spotted on the microarray chips in these studies include 

proteins, synthetic peptides from the sequences of key proteins, nucleotides and 

phospholipids, and are enumerated in the Supporting Information, Table 1. 

 

Antigen microarray chips 

Antigens diluted in PBS were placed in 384-well plates at a concentration of 1 

µg/µl.  We used a robotic MicroGrid arrayer with solid spotting pins of 0.2 mm 

diameter  (BioRobotics, Cambridge, UK) to spot the antigens onto ArrayIt 

SuperEpoxi Microarray Substrate slides (TeleChem International, Sunnyvale, 

California, USA).  Each antigen was spotted in 2-8 replicates. The spotted 

microarrays were stored at 4°C.  The chips were washed with PBS and blocked for 1 

hr at 37°C with 1 % BSA, and incubated overnight at 4°C with a 1/5 dilution of the 

test serum in blocking buffer under a cover slip.  The arrays were then washed and 

incubated for 45 minutes at 37°C with a 1/500 dilution of a goat anti-mouse IgG Cy3-

conjugated antibody, purchased from Jackson ImmunoResearch Labs. Inc. (West 

Grove, Pennsylvania, USA).  The arrays were washed again, spun dried and scanned 
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with a ScanArray 4000X scanner (GSI Luminomics, Billerica, Massachusetts, USA). 

The results were recorded as TIFF files. 

 

Image and data processing 

The pixels that comprised each spot in the TIFF files and the local background 

were identified using histogram segmentation.  The intensity of each spot and its local 

background were calculated as the mean of the corresponding pixel intensities.  None 

of the spots containing antigens showed saturation.  Technically faulty spots were 

identified by visual inspection and removed from the dataset.   For each spot, the local 

background intensity was subtracted from the spot intensity.  Spots with negative 

intensities were removed from the dataset.  A log-base-2 transformation of the 

intensities resulted in reasonably constant variability at all intensity levels.  The log-

intensity of each antigen was calculated as the mean of the log-intensities of the 

replicates on each slide. The coefficient of variability (CV) between replicates on 

each array was around 30%. 

To remove overall differences in intensities between arrays, the mean-log-

intensity of each antigen on each array was scaled by subtracting the median of the 

mean-log-intensities of all antigens on the array.  The scaled mean-log-intensity of an 

antigen is denoted the reactivity of the antigen.  

The processed dataset consists of a matrix of IgG reactivities consisting of 266 

rows and 38 columns (2 samples for each of 19 mice).  Each column contains the 

reactivities measured on a given array and each row contains the reactivities measured 

for a given antigen over all arrays.  

Additionally, the reactivity for each antigen measured before and after 

cyclophosphamide treatment in each mouse was combined into a log-ratio by 
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subtracting the reactivity before treatment from the reactivity after treatment.  This 

yielded a matrix of ratios with 266 rows and 19 columns. 

 

Data analysis 

We based the clustering of antigens and samples on the Superparamagnetic 

Clustering (SPC) algorithm (13) because it provides an inherent mechanism for 

identifying robust and stable clusters.  The algorithm can be understood by an analogy 

to physics: as a parameter T (the temperature) is increased, the system undergoes 

phase transitions (for example, it melts).  In our case, T is increased from 0 (all 

objects form one cluster) to Tmax (each object forms a separate cluster).  The break up 

of larger clusters into smaller sub-clusters is governed by the structure of the data: 

similar objects tend to stay together over a large increase in T, while less similar 

objects break apart more easily.  The range of T’s for which a given cluster remains 

unchanged, denoted by ∆T, is used as a stability measure for the cluster.  As the 

measure of similarity between objects, we used Euclidean distance for both samples 

and antigens.  Since the antigen reactivities (or ratios) were first row-centered and 

normalized before being clustered, their squared distance is proportional to 1 – r, 

where r is the correlation coefficient.  The correlation coefficient captures similarity 

in shape and the Euclidean distance captures similarity in magnitude. 

To determine subsets of the 266 antigens that would separate the sick and 

healthy mice, we used the Wilcoxon rank-sum test (14).  This test is non-parametric; 

it is robust to outliers.  We test one antigen at a time, replacing the reactivities (or 

ratios) with ranks according to their magnitude: 1 for the smallest, 2 for the second 

smallest, and so on.  The p-values found using this method were higher than 0.01; but 

no single antigen was found to significantly discriminate between the two groups 
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when the Bonferroni-correction (15) or the False Discovery Rate method (16) were 

applied.  This means that the signal produced by any single antigen is unable to 

separate the sick mice from the healthy.  Separability might be achieved, if at all, by 

using reactivity (or ratio) profiles defined over several antigens.  To capture a 

collective effect of several antigens, we selected the 27 antigens (10% of the 266 

antigens in the study) with the lowest p-values, and investigated how good they were 

collectively at separating sick from healthy mice, and which antigens showed 

correlated behavior over the samples, by applying two-way SPC.  This gives an 

unsupervised clustering of the subset of antigens and of the samples.  The clusters of 

samples found using this method were evaluated for their stability ∆T, specificity, and 

sensitivity.  Specificity is the proportion of sick mice in the “sick cluster”; sensitivity 

is the proportion of the sick mice in the “sick cluster” compared to all the sick mice in 

the study. 

  

Statistical significance 

To obtain a measure of the significance of the separation between sick and 

healthy mice using the method outlined above, we performed the following test:  

From the group of healthy mice, we picked at random 5 of the samples, and similarly, 

for the group of sick mice we randomly picked 4 of the samples.  These 9 samples 

were labeled as “type A”.  The remaining samples were labeled as “type B”.  We 

hypothesized that there should be no clear separation between these randomized 

types: we used the Wilcoxon rank-sum test to identify the 27 antigens that 

differentiated best groups A and B.  Next, we clustered the mice in the space of these 

27 antigens, and look for stable, specific, and sensitive clusters, using SPC.  We 

performed the test 1000 times on different randomized groups and recorded the 
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stability, specificity, and sensitivity of the resulting clusters.  The proportion of 

random clusters manifesting these features to the same or to a better degree than the 

actual cluster establishes the p-value of the actual cluster. 
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Results 

 

Selection of informative antigens for pre-CAD mice 

We have previously reported that coupled two-way clustering (CTWC) could 

be used to successfully separate human subjects already diabetic from healthy persons 

(17).  In the CAD mouse study done here, however, only a few of the clusters of co-

regulated antigens using the CTWC technique separated between the sick and the 

healthy mice before CAD, and then only for a subset of the mice.  We therefore took a 

different approach. Based on the sera taken before cyclophosphamide treatment, 

Table 1 List I tabulates the 27 antigens that separated best between the sera of the 10 

mice that later resisted the induction of CAD and the 9 mice that later developed CAD 

(using the Wilcoxon rank-sum test and taking the 10% with lowest p-values).     

Figure 2 Left Panel, shows the two-way SPC of these antigens.  The mice 

susceptible to future CAD induction are denoted by the filled rectangles at the top of 

the clustering box; the mice resistant to future CAD induction are denoted by the 

empty rectangles.  The 27 antigens are clustered at the rows, and identified by number 

(see Table 1).  It can be seen that all 9 mice that were found later to be susceptible to 

CAD could be separated from 8 of the 10 mice that were later found to resist CAD; 

before cyclophosphamide, the CAD-susceptible mice manifested relatively elevated 

IgG reactivity to the top 19 antigens in Figure 2 Left Panel, while the CAD-resistant 

mice manifested relatively elevated IgG reactivity to the remaining 8 antigens.  The 

clustering separation was significant (p<0.017; only 17 of 1000 randomly generated 

groups showed results comparable to the actual data set).  Thus mice susceptible to 

CAD could be distinguished by their patterns of IgG serum antibodies from mice 

resistant to CAD, even before cyclophosphamide was administered to the mice.   
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Selection of informative antigens for post-CAD mice 

 We then used the 27 antigens effective in pre-CAD clustering to analyze the 

patterns of IgG antibodies developing in the diabetic and healthy mice post-CAD.  

Surprisingly, these 27 antigens failed to discriminate between the two groups of mice; 

the obvious pre-CAD clusters seen in Figure 2, Left Panel, dispersed when the same 

antigens were used to cluster the post-CAD sera; compare the Right and Left panels 

in Figure 2.  For this reason, we tested whether other sets of antigens might be more 

informative post-CAD.  The 27 antigens listed in Table 1 List II was generated by 

performing the Wilcoxon rank-sum test on the reactivities measured post-CAD.  A 

third set of 27 antigens was generated by performing the Wilcoxon rank-sum test on 

the ratios by which each antigen changed post-CAD/pre-CAD. The ratios provide 

information on reactivity changes toward the antigen. These antigens are shown in 

Table 1 List III.  

Figures 3 and 4 show that the List II and the List III antigens could indeed 

separate between the healthy and diabetic mice post-CAD: specificity up to 82% and 

sensitivity up to 100% (p=0.065).  Thus, the IgG repertoires of the pre-CAD and post-

CAD groups of healthy and sick mice could be clustered, but the informative patterns 

of reactivity required modified sets of antigens to develop discriminating patterns.    

 It can be seen that some of the antigens from the set of pre-CAD antigens 

(Table 1 List I) were also present in the post-CAD set (Table 1 List II), or in the set of 

antigens determined from the pre-CAD/post-CAD ratios (Table I List III).  For 

example, three of the pre-CAD antigen reactivities were also prominent post-CAD 

(antigens 17, 18 and 26; Table 1 List I).  The shared and distinct antigens are shown 

as a Venn diagram for the overlap between Lists I, II and III in Figure 5.  List III in 

Table 1 (ratio difference) can be seen to have generated a set of antigens most shared 

 12



(dark rectangles) between pre-CAD sera (List I) and post-CAD sera (List II); see 

Table 1 and Figure 5.   
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Discussion 

 

 The antigen microarray chip described in this paper required much 

preliminary work to obtain consistent results, including determination of a workable 

surface coating for the glass, reagent concentrations and incubation times, size of 

spots, distances between spots, washing protocols, laser activation and reading, and 

other technical issues (manuscript in preparation).  Patterns of IgM antibodies were 

analyzed both before and after CAD, but these results too will be presented elsewhere. 

Here we show that the patterns of IgG antibodies expressed pre-CAD in male 

NOD mice can mark susceptibility or resistance to CAD induced later.  We also found 

patterns of IgG antibodies characteristic of healthy or diabetic mice post-CAD, but 

these patterns required sets of antigens that differed from the informative pre-CAD set 

(see Table 1).  Thus, IgG reactivities to some antigens may mark future susceptibility 

to CAD, but not CAD itself once the disease emerges, and, conversely, some IgG 

reactivities may mark the disease but not the susceptibility.  Hence, prediction of 

future disease (this paper) and diagnosis of present disease (this paper and (10, 11)) 

can depend on different data sets of information, at least in the CAD model.  The 

reasons for this divergence need to be investigated, but the divergence itself may be 

explained by the likelihood that the IgG antibodies we measured are not themselves 

the causal agents, but only indirect, surrogate markers for the autoimmune T cells that 

directly regulate or mediate the diabetic process.  This observation should alert us to 

the possibility of a similar divergence between the prediction and the diagnosis of 

human diseases. 

Another notable finding was that health, both pre-CAD and post-CAD, was 

associated with relatively high IgG autoreactivity to self-antigens, to which the 
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susceptible mice were low IgG responders (Figures 2 and 4, and Table 1).  Thus some 

types of active autoimmunity may actually protect against autoimmune disease (18-

20).  This finding is compatible with the idea that autoimmunity of certain 

specificities is not only compatible with health, but essential for health (21, 22).   

Individual mice of the highly inbred NOD strain would seem to bear very 

similar, if not identical genomic DNA, yet almost half the male mice resist CAD as 

well as they resist slowly progressive spontaneous diabetes.  In humans, too, type 1 

diabetes develops in persons bearing certain alleles, predominantly alleles of HLA 

immune response genes (23), but most individuals who have inherited these 

susceptibility alleles will never develop the disease.  Indeed, identical twins develop 

type 1 diabetes with a concordance rate of less than 50%, despite having inherited 

identical genomic DNA (24).  Thus, environmental factors would appear to determine 

whether the diabetic potential inherent in one’s genome becomes realized as type 1 

diabetes (25, 26).  Since type 1 diabetes, including the CAD variant in NOD mice, is 

an autoimmune disease (7, 9, 12), it is very likely that resistance or susceptibility to 

the disease emerges from the interaction of the individual’s immune system with the 

environment, down-stream of a permissive germ-line genetic endowment.  Indeed, 

only the changing environment can be blamed for the alarming increase in the 

incidence of type 1 diabetes noted in the past few decades; significant changes in the 

frequencies of human genes have not occurred in the interim in affected populations 

(27).  Thus, type 1 diabetes emerges from the impact of the environment on the 

structure and function of the immune system in a way that transforms naturally benign 

autoimmunity into an autoimmune disease affecting the insulin-producing β cells 

(22).  Various environmental factors can probably act to induce type 1 diabetes in 

susceptible individuals; the CAD model is one example. 
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But environmental factors can also prevent the development of type 1 

diabetes.  Stimulation of the NOD mouse immune system by infection (28-30) or by 

vaccination with microbial antigens (31) or by treatment with ligands that activate 

innate immune receptors (32-34) can prevent diabetes.  Thus, the cumulative 

experience of the immune system (including, for example, positive autoimmunity to 

antigens such as the lower 8 antigens in Figure 2, Left Panel) can determine the 

organization of its component molecules and cells regarding self-antigens, and this 

internal structuring can, in turn, help one resist the accidental induction of an 

autoimmune disease.  Type 1 diabetes appears in very young people (12, 35), so 

critical aspects of autoimmune organization must occur fairly early in one’s lifetime.  

The results of this bioinformatic study would suggest that, in addition to individual 

differences in immune repertoires, some organized patterns of IgG autoantibodies are 

shared by groups of individuals, at least among NOD mice.  

The bioinformatic analysis described here relates to two separate, but linked 

issues: predictive medicine via functional immunomics and the biological meaning of 

the autoimmune repertoire. 

Functional immunomics may be defined as the functional state of the immune 

system inscribed in its global patterns of immune molecules and cells.  Functional 

immunomics, even that limited to part of the IgG autoantibody repertoire as we show 

here, can help anticipate disease before it emerges, and anticipation is an important 

first step in predictive medicine.  

Beyond its potential usefulness for predictive medicine, functional 

immunomics may teach us some things about the biology of immune system 

organization.  Note that the list of informative antigens (Table 1) does not contain 

insulin, a well-studied self-antigen in diabetes (12).  A peptide of glutamic acid 
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decarboxylase (GAD), used clinically to diagnose type 1 diabetes in humans (2, 36, 

37), was only informative after CAD was induced (Table 1 List II).  The immune 

system is a complex system, and reactivities of seemingly minor magnitude can play 

major roles in complex system behavior (22, 38).  Measuring autoantibodies to a few 

known antigens only (10, 11) may not provide the same information as can a global 

pattern.   

The present study investigated patterns of antibodies, and not their function in 

the disease process.  Nevertheless, the list of informative antigens may be connected 

to other observations regarding the pathophysiology type 1 diabetes.  Six of the 8 

antigens to which relatively high IgG reactivity is associated with resistance to CAD 

are peptides derived from heat shock proteins (HSP): peptides p277, 22 and 16 of 

HSP60, peptides 1 and 7 from the sequence of GroEl (the HSP60 molecule of E. coli), 

and peptide 13 of HSP70.  Indeed, the three antigens associated with health both 

before and after CAD are p277, peptide 22 of HSP60 and peptide 1 of GroEl (see 

Figure 5 and Table 1).  Vaccination with HSP60/p277 can arrest type 1 diabetes in 

NOD mice (18, 39), and has been shown to arrest the destruction of insulin-producing 

beta cells in a clinical trial in humans (40).   

It is worthy of note that peptide p277 of HSP60 was first discovered as a 

dominant epitope for T cells (18).  The natural IgG reactivity of CAD-resistant mice 

to this “T-cell peptide” demonstrates that some autoantibodies do reflect elements of 

the T-cell repertoire.  Indeed, prevention of spontaneous diabetes in NOD mice by 

stimulating innate toll-like receptors with CpG oligonucleotide was found to 

spontaneously activate the production of IgG antibodies to peptide p277 (34).  We 

have found that vaccination with HSP60 can inhibit CAD, apparently by modifying 

the cytokine profile of autoimmune effector T cells (19).  HSP60 vaccination can also 
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induce regulatory T cells effective in models of autoimmune arthritis (20, 41).  Thus 

the association of resistance to CAD with natural IgG antibodies to HSP60 peptides 

suggests that medicinal vaccination with HSP60 or its peptides may work by 

strengthening regulatory networks that arise naturally through immune experience 

with endogenous (or cross-reactive bacterial) heat shock proteins.  Autoimmunity to 

HSP60 peptides like p277 is built into the healthy immune system (22).   

The 19 antigens targeted by IgG antibodies in the CAD-susceptible mice are 

also interesting biologically.  Three peptides of HSP70 are included, and T-cell 

autoimmunity to HSP70 has been described in human type 1 diabetes patients (42).  

Gliadin is an antigen associated with Celiac disease, and celiac patients have been 

reported to have an increased incidence of type 1 diabetes (43).  MOG is a molecule 

present in myelin, and T-cell autoimmunity to MOG can induce experimental 

autoimmune encephalomyelitis in NOD mice (44).  Glucagon is produced by α cells 

in the pancreatic islets adjacent to the β cells that produce insulin, but no studies of 

autoimmunity glucagon have been yet reported in type 1 diabetes.  Accelerated 

atherosclerosis is a serious complication of type 1 diabetes (45), and is assumed to 

arise as a complication of poor glucose homeostasis in poorly controlled diabetes 

(46).  Autoimmunity to LDL and HDL, however, has been proposed to be a factor in 

atherosclerosis in general (45).  The finding of heightened IgG autoimmunity to LDL 

and HDL in the mice susceptible to CAD suggests the possibility that LDL and HDL 

autoimmunity might actually be part of the collective of autoimmune reactions 

responsible for the primary development of type 1 diabetes.  If this is true, then the 

vascular “complications” of type 1 diabetes may be a primary and early event in the 

disease process and not merely a phenomenon secondary to poor metabolic control.  

VEGF and vasopressin too are molecules that function in blood vessel formation and 
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the physiology of blood flow (47, 48).  The increase in IgG antibodies to certain 

antigens post-CAD is also intriguing, and we will discuss the possible biological 

significance of these reactivities elsewhere.  For now, it is important to note that a 

bioinformatic analysis can, by itself, raise new questions for further biological 

research; arrays of antigens open new windows for viewing natural autoimmunity, 

autoimmune disease and the links between them.   

The demonstration of patterns of autoantibody reactive with key self-

molecules and the association of such reactivity with health challenges basic 

assumptions of the classical clonal selection theory (CST) of adaptive immunity (49).  

According to the CST, autoimmune repertoires should not exist in healthy individuals.  

The present findings are more compatible with a cognitive paradigm of immunity (22, 

50, 51).   

The core of organized autoimmune repertoires within the immune system has 

been termed the immunological homunculus, the immune system’s internal 

representation of the body under its care (50, 51).  The mammalian immune system, 

in addition to its well-studied role in defending the body against foreign invaders, is 

now understood to be heavily involved in maintaining the integrity of the body from 

within; immune system cells and molecules, which comprise the inflammatory 

response, are key factors in wound healing, neuroprotection, connective tissue 

formation, angiogenesis, tissue morphology and regeneration, and waste disposal (5, 

21, 22).  To dispense reparative inflammation at the right sites and occasions, the 

immune system has to assess the state of the body on the fly.  In this respect, the 

immune system acts as it were the body’s onboard bioinformatic computer.  If so, 

predictive medicine would do well to mine this immune information, as this study 

suggests it might. 
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Figure Legends 
 
 
Figure 1.  The experimental protocol.  The numbers refer to the age (in weeks) of the 
mice.  The black vertical lines at 4 and 9 weeks indicate serum sample collection.  
The grey vertical lines at 4 and 5 weeks indicate cyclophosphamide injection.  The 
grey box at 6 weeks shows when the CAD-susceptible mice developed diabetes, and 
the grey box between 11 and 13 weeks shows the time of death of the untreated 
diabetic mice. 
 
Figure 2.  Reactivity matrices of 27 antigens separate diabetic and healthy mice, 
before CAD induction. The rows are antigens and the columns are the mouse sera.  
Each antigen is identified by the number shown between the two reactivity matrices 
(see Table 1).  The Left Panel shows a two-way SPC of the antigens and the serum 
samples pre-CAD.  The length of a branch connecting to a cluster represents the 
stability of the cluster.  Filled boxes denote mice that later developed CAD, and open 
boxes denote mice that resisted CAD.  The Right Panel shows the SPC of the serum 
samples post-CAD.  Filled boxes denote mice that developed CAD, and open boxes 
denote healthy mice that resisted CAD.  The antigens used in the two panels are the 
same and presented in the same order. 
 
Figure 3.  Two-way SPC of 27 antigens that separate sick and healthy mice, post-
CAD.  Filled boxes denote diabetic mice and open boxes denote healthy mice. 
 
Figure 4.  Two-way SPC of 27 antigens that separate the sick and healthy mouse 
samples using the pre-CAD and post-CAD ratios.  Filled boxes denote mice 
susceptible to CAD and open boxes denote mice resistant to CAD. 
 
Figure 5.  Venn diagram showing antigens shared by the three lists of 27 antigens: 
(I), pre-CAD; (II), post-CAD; and (III), sick and healthy mice by ratio.  See Table 1.   
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Table 1.  Discriminating sets of antigens. 

         Antigen Lists 

Class Antigen # I II III 

HSP HSP60/p16 21 H   S 

  HSP60/p22 17 H S S 

  HSP60/p30 55     S 

  HSP60/p34 36   S S 

  HSP60/p35 59     H 

  HSP60p277 26 H H   

  GroEL/p1 18 H H   

  GroEL/p7 9 H     

  GroEL/p10 35   H   

  GroEL/p11 31   H H 

  GroEL/p15 47   H   

  GroEL/p16 51   H   

  GroEL/p18 44   H   

  GroEL/p23 37   H H 

  GroEL/p25 53     H 

  GroEL/p28 56     H 

  HSP70/p4 48   S   

  HSP70/p6 46   S S 

  HSP70/p8 10 S   H 

  HSP70/p9 32   S   

  HSP70/p13 7 H S S 
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  HSP70/p12 38   H   

  HSP70/p17 22 S     

  HSP70/p22 28   S S 

  HSP70/p23 49   H   

  HSP70/p24 14 H     

  HSP70/p30 15 S     

  HSP71 19 H     

Tissue  Glucagon 12 S   H 

antigens GAD/p34 29   S S 

  C-peptide 41   S   

  MOBP/p78-89 40   S S 

  MOG mouse 24 H     

  Cartilage Extract 52     S 

  Vimentin  57     H 

  VEGF 8 S     

Immune TCR β−chain/pMed12 30   S   

receptors TCR β−chain/pN12 43   S S 

  IL-2R α−chain/p2 34   S   

  IL-2R β−chain/p1 45   S   

Enzymes Acid Phosphatase 3 H     

  Aldolase 33   S   

  Collagenase 39   H   

  GSTase 50   H   

  holo-transferase 27 H   S 
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Hormones βMSH 2 S   H 

  BNP 20 S     

  DAP 11 S     

  Gliadin 23 H     

  Somatostatin 54     H 

  Vasopresin 6 S   H 

  VIP 13 S   H 

Plasma Plasmin 42   S   

  HDL 5 S     

  LDL 1 S   H 

  human Serum Albumin 58     S 

  methylated BSA 4 S     

Other KLH 25 H   S 

antigens PS4 16 H     

 

 

The numbers (#) refer to the antigens shown in the Figures.  The dark boxes indicate 

the antigens that participated in the separations.  The letter in the box indicates the 

group in which the reactivity to the antigen (or pre-CAD/post-CAD ratio) was 

relatively the highest; S designates the sick group of mice, and H designates the 

healthy group of mice.  Antigen List I refers to the 27 antigens pre-CAD selected by 

rank-sum from those remaining healthy (H) and those later developing diabetes (S) 

after cyclophosphamide.  Antigen List II refers to the 27 antigens selected by rank-

sum for the healthy and sick groups post-CAD. Antigen List III refers to the 27 

antigens selected by rank-sum from the pre-CAD/post-CAD ratios. 
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Antigen abbreviations: GAD, glutamic acid decarboxylase; MOBP, Myelin-

Associated Oligodendrocytic Basic Protein; MOG, Myelin Oligodendrocyte 

Glycoprotein; VEGF, Vascular Endothelial Growth Factor; TCR, T-cell receptor; 

GSTase, Galactosyltransferase; MSH, Melanocyte Stimulating Hormone; BNP, 

Brain Natriuretic Peptide; DAB, Diabetes Associated Peptide amide; VIP, 

Vasointestinal peptide; HDL, Lipoprotein, High Density; LDL, Lipoprotein, Low 

Density; BSA, Bovine Serum Albumin; KLH, Keyhole Lympet Hemocyanin. 
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